1,079 research outputs found

    Which One is Me?: Identifying Oneself on Public Displays

    Get PDF
    While user representations are extensively used on public displays, it remains unclear how well users can recognize their own representation among those of surrounding users. We study the most widely used representations: abstract objects, skeletons, silhouettes and mirrors. In a prestudy (N=12), we identify five strategies that users follow to recognize themselves on public displays. In a second study (N=19), we quantify the users' recognition time and accuracy with respect to each representation type. Our findings suggest that there is a significant effect of (1) the representation type, (2) the strategies performed by users, and (3) the combination of both on recognition time and accuracy. We discuss the suitability of each representation for different settings and provide specific recommendations as to how user representations should be applied in multi-user scenarios. These recommendations guide practitioners and researchers in selecting the representation that optimizes the most for the deployment's requirements, and for the user strategies that are feasible in that environment

    GTmoPass: Two-factor Authentication on Public Displays Using Gaze-touch Passwords and Personal Mobile Devices

    Get PDF
    As public displays continue to deliver increasingly private and personalized content, there is a need to ensure that only the legitimate users can access private information in sensitive contexts. While public displays can adopt similar authentication concepts like those used on public terminals (e.g., ATMs), authentication in public is subject to a number of risks. Namely, adversaries can uncover a user's password through (1) shoulder surfing, (2) thermal attacks, or (3) smudge attacks. To address this problem we propose GTmoPass, an authentication architecture that enables Multi-factor user authentication on public displays. The first factor is a knowledge-factor: we employ a shoulder-surfing resilient multimodal scheme that combines gaze and touch input for password entry. The second factor is a possession-factor: users utilize their personal mobile devices, on which they enter the password. Credentials are securely transmitted to a server via Bluetooth beacons. We describe the implementation of GTmoPass and report on an evaluation of its usability and security, which shows that although authentication using GTmoPass is slightly slower than traditional methods, it protects against the three aforementioned threats

    Generating analyzers with PAG

    Get PDF
    To produce high qualitiy code, modern compilers use global optimization algorithms based on it abstract interpretation. These algorithms are rather complex; their implementation is therfore a non-trivial task and error-prone. However, since thez are based on a common theory, they have large similar parts. We conclude that analyzer writing better should be replaced with analyzer generation. We present the tool sf PAG that has a high level functional input language to specify data flow analyses. It offers th specifications of even recursive data structures and is therfore not limited to bit vector problems. sf PAG generates efficient analyzers wich can be easily integrated in existing compilers. The analyzers are interprocedural, they can handle recursive procedures with local variables and higher order functions. sf PAG has successfully been tested by generating several analyzers (e.g. alias analysis, constant propagation, inerval analysis) for an industrial quality ANSI-C and Fortran90 compiler. This technical report consits of two parts; the first introduces the generation system and the second evaluates generated analyzers with respect to their space and time consumption. bf Keywords: data flow analysis, specification and generation of analyzers, lattice specification, abstract syntax specification, interprocedural analysis, compiler construction

    EyePACT: eye-based parallax correction on touch-enabled interactive displays

    Get PDF
    The parallax effect describes the displacement between the perceived and detected touch locations on a touch-enabled surface. Parallax is a key usability challenge for interactive displays, particularly for those that require thick layers of glass between the screen and the touch surface to protect them from vandalism. To address this challenge, we present EyePACT, a method that compensates for input error caused by parallax on public displays. Our method uses a display-mounted depth camera to detect the user's 3D eye position in front of the display and the detected touch location to predict the perceived touch location on the surface. We evaluate our method in two user studies in terms of parallax correction performance as well as multi-user support. Our evaluations demonstrate that EyePACT (1) significantly improves accuracy even with varying gap distances between the touch surface and the display, (2) adapts to different levels of parallax by resulting in significantly larger corrections with larger gap distances, and (3) maintains a significantly large distance between two users' fingers when interacting with the same object. These findings are promising for the development of future parallax-free interactive displays

    Hidden Pursuits: Evaluating Gaze-selection via Pursuits when the Stimuli's Trajectory is Partially Hidden

    Get PDF
    The idea behind gaze interaction using Pursuits is to leverage the human's smooth pursuit eye movements performed when following moving targets. However, humans can also anticipate where a moving target would reappear if it temporarily hides from their view. In this work, we investigate how well users can select targets using Pursuits in cases where the target's trajectory is partially invisible (HiddenPursuits): e.g., can users select a moving target that temporarily hides behind another object? Although HiddenPursuits was not studied in the context of interaction before, understanding how well users can perform HiddenPursuits presents numerous opportunities, particularly for small interfaces where a target's trajectory can cover area outside of the screen. We found that users can still select targets quickly via Pursuits even if their trajectory is up to 50% hidden, and at the expense of longer selection times when the hidden portion is larger. We discuss how gaze-based interfaces can leverage HiddenPursuits for an improved user experience

    Brainatwork: Logging Cognitive Engagement and Tasks in the Workplace Using Electroencephalography

    Get PDF
    Today's workplaces are dynamic and complex. Digital data sources such as email and video conferencing aim to support workers but also add to their burden of multitasking. Psychophysiological sensors such as Electroencephalography (EEG) can provide users with cues about their cognitive state. We introduce BrainAtWork, a workplace engagement and task logger which shows users their cognitive state while working on different tasks. In a lab study with eleven participants working on their own real-world tasks, we gathered 16 hours of EEG and PC logs which were labeled into three classes: central, peripheral and meta work. We evaluated the usability of BrainAtWork via questionnaires and interviews. We investigated the correlations between measured cognitive engagement from EEG and subjective responses from experience sampling probes. Using random forests classification, we show the feasibility of automatically labeling work tasks into work classes. We discuss how BrainAtWork can support workers on the long term through encouraging reflection and helping in task scheduling

    Understanding Shoulder Surfing in the Wild: Stories from Users and Observers

    Get PDF
    Research has brought forth a variety of authentication systems to mitigate observation attacks. However, there is little work about shoulder surfing situations in the real world. We present the results of a user survey (N=174) in which we investigate actual stories about shoulder surfing on mobile devices from both users and observers. Our analysis indicates that shoulder surfing mainly occurs in an opportunistic, non-malicious way. It usually does not have serious consequences, but evokes negative feelings for both parties, resulting in a variety of coping strategies. Observed data was personal in most cases and ranged from information about interests and hobbies to login data and intimate details about third persons and relationships. Thus, our work contributes evidence for shoulder surfing in the real world and informs implications for the design of privacy protection mechanisms

    GazeTouchPIN: Protecting Sensitive Data on Mobile Devices Using Secure Multimodal Authentication

    Get PDF
    Although mobile devices provide access to a plethora of sensitive data, most users still only protect them with PINs or patterns, which are vulnerable to side-channel attacks (e.g., shoulder surfing). How-ever, prior research has shown that privacy-aware users are willing to take further steps to protect their private data. We propose GazeTouchPIN, a novel secure authentication scheme for mobile devices that combines gaze and touch input. Our multimodal approach complicates shoulder-surfing attacks by requiring attackers to ob-serve the screen as well as the user’s eyes to and the password. We evaluate the security and usability of GazeTouchPIN in two user studies (N=30). We found that while GazeTouchPIN requires longer entry times, privacy aware users would use it on-demand when feeling observed or when accessing sensitive data. The results show that successful shoulder surfing attack rate drops from 68% to 10.4%when using GazeTouchPIN

    Investigating User Needs for Bio-sensing and Affective Wearables

    Get PDF
    Bio-sensing wearables are currently advancing to provide users with a lot of information about their physiological and affective states. However, relatively little is known about users' interest in acquiring, sharing and receiving this information and through which channels and modalities. To close this gap, we report on the results of an online survey (N=109) exploring principle aspects of the design space of wearables such as data types, contexts, feedback modalities and sharing behaviors. Results show that users are interested in obtaining physiological, emotional and cognitive data through modalities beyond traditional touchscreen output. Valence of the information, whether positive or negative affects the sharing behaviors

    They Are All After You: Investigating the Viability of a Threat Model That Involves Multiple Shoulder Surfers

    Get PDF
    Many of the authentication schemes for mobile devices that were proposed lately complicate shoulder surfing by splitting the attacker's attention into two or more entities. For example, multimodal authentication schemes such as GazeTouchPIN and GazeTouchPass require attackers to observe the user's gaze input and the touch input performed on the phone's screen. These schemes have always been evaluated against single observers, while multiple observers could potentially attack these schemes with greater ease, since each of them can focus exclusively on one part of the password. In this work, we study the effectiveness of a novel threat model against authentication schemes that split the attacker's attention. As a case study, we report on a security evaluation of two state of the art authentication schemes in the case of a team of two observers. Our results show that although multiple observers perform better against these schemes than single observers, multimodal schemes are significantly more secure against multiple observers compared to schemes that employ a single modality. We discuss how this threat model impacts the design of authentication schemes
    • …
    corecore